Extensions 1→N→G→Q→1 with N=C4 and Q=C22xC10

Direct product G=NxQ with N=C4 and Q=C22xC10
dρLabelID
C23xC20160C2^3xC20160,228

Semidirect products G=N:Q with N=C4 and Q=C22xC10
extensionφ:Q→Aut NdρLabelID
C4:(C22xC10) = D4xC2xC10φ: C22xC10/C2xC10C2 ⊆ Aut C480C4:(C2^2xC10)160,229

Non-split extensions G=N.Q with N=C4 and Q=C22xC10
extensionφ:Q→Aut NdρLabelID
C4.1(C22xC10) = C10xD8φ: C22xC10/C2xC10C2 ⊆ Aut C480C4.1(C2^2xC10)160,193
C4.2(C22xC10) = C10xSD16φ: C22xC10/C2xC10C2 ⊆ Aut C480C4.2(C2^2xC10)160,194
C4.3(C22xC10) = C10xQ16φ: C22xC10/C2xC10C2 ⊆ Aut C4160C4.3(C2^2xC10)160,195
C4.4(C22xC10) = C5xC4oD8φ: C22xC10/C2xC10C2 ⊆ Aut C4802C4.4(C2^2xC10)160,196
C4.5(C22xC10) = C5xC8:C22φ: C22xC10/C2xC10C2 ⊆ Aut C4404C4.5(C2^2xC10)160,197
C4.6(C22xC10) = C5xC8.C22φ: C22xC10/C2xC10C2 ⊆ Aut C4804C4.6(C2^2xC10)160,198
C4.7(C22xC10) = Q8xC2xC10φ: C22xC10/C2xC10C2 ⊆ Aut C4160C4.7(C2^2xC10)160,230
C4.8(C22xC10) = C10xC4oD4φ: C22xC10/C2xC10C2 ⊆ Aut C480C4.8(C2^2xC10)160,231
C4.9(C22xC10) = C5x2+ 1+4φ: C22xC10/C2xC10C2 ⊆ Aut C4404C4.9(C2^2xC10)160,232
C4.10(C22xC10) = C5x2- 1+4φ: C22xC10/C2xC10C2 ⊆ Aut C4804C4.10(C2^2xC10)160,233
C4.11(C22xC10) = C10xM4(2)central extension (φ=1)80C4.11(C2^2xC10)160,191
C4.12(C22xC10) = C5xC8oD4central extension (φ=1)802C4.12(C2^2xC10)160,192

׿
x
:
Z
F
o
wr
Q
<